LuMind RDS' sole focus is on the discovery, development and translation of groundbreaking Down syndrome research.
LUMIND RDS VISION
To be the global leader in funding a comprehensive portfolio of research to meaningfully improve health and independence in individuals with Down syndrome.

LUMIND RDS VALUES

ON A MISSION
- We will do all we can to help significantly improve health and independence in people with Down Syndrome

FOCUS
- We are laser-focused on four research categories in which we fund groundbreaking, high impact research and we evaluate every grant dollar through the lens of translation

FOLLOW THE SCIENCE
- We constantly revisit our views on what is groundbreaking research and of where to spend the next dollar raised. We use Translational Key Opinion Leader Meetings to help define the next development steps and frontiers to overcome for the most promising research targets

PIONEERS
- Since 2004, we have a history of being at the forefront of research and we continue to pioneer innovations

SPEED
- We leverage relationships, collaborate and draw on our network to accelerate research in Down syndrome

COLLABORATION
- We collaborate whenever possible to access knowledge, speed up research and save costs

NETWORK
- We have a close-knit, passionate community of families, researchers and advocates, and a deep biotech and pharma industry network

TRANSPARENT
- We share our goals with internal and external stakeholders
KEY ACCOMPLISHMENTS

- Defined multiple mechanisms involved in cognitive impairment
- Identified 10 new potential therapeutic drug targets
- Developed Down syndrome-specific cognitive test batteries across life-span (ACTB, A-MAP)
- Established early clinical testing network
- Stimulated several large NIH initiatives (registry, biomarkers, AC Immune & A-MAP)

- Supported 14 clinical trials on 1,300 participants, including:
 - Roche Roc, Basmisanil (RG1662): Developmental Intellectual Disability in Down syndrome
 - AC Immune (ACI-24): Alzheimer’s Disease in Down syndrome
 - Balance Therapeutics (BTD-001): Developmental Intellectual Disability in Down syndrome
 - Transition Therapeutics (ELND-005): Alzheimer’s Disease & Cognition in Down syndrome

- Founding sponsor of the first international research consortium, the Trisomy 21 Research Society

LUMIND RDS SCIENTIFIC RESEARCH CATEGORIES FOR DOWN SYNDROME

PREVENT ALZHEIMER ONSET
- Encourage industry-led clinical trials of therapeutic approaches
- Develop necessary resources: assessment scales, registry, etc.

DEVELOP GENE THERAPIES
- Silence genes of concern or extra chromosome
- Restore the right level of specific gene(s)

IMPROVE COGNITION
- Translate Down syndrome-specific approaches to clinical trials
- Validate Down syndrome-specific cognition targets

ADVANCE UNDERSTANDING
- Discover novel targets (stem cells, sequencing/phenotyping)
- Improve mouse models to better test novel targets
PARTNER INSTITUTIONS FUNDED BY LUMIND RDS

Funded $17M in research, including $1.8M in grants in FY2017, which has led to significant concurrent funding from NIH and industry partners.
The Down Syndrome Cognition Project

RESEARCH CATEGORY / ADVANCE UNDERSTANDING

The overarching goal of this project is to identify altered biological pathways as a basis for therapeutic development and precision medicine. To do so, this project has established an infrastructure to collect clinical, neuropsychological, and maternal interview information from individuals with Down syndrome, along with biological samples for genetic studies. These resources are used to discover factors that explain the wide range of severity among Down syndrome-associated conditions, to develop better tests for clinical trials and to build a foundation for a larger DS360 Down syndrome Research Consortium to accelerate research.

PRIMARY INVESTIGATORS

Dr. Roger Reeves, PhD
Dr. Stephanie Sherman, PhD

SPOTLIGHT #1

A Down Syndrome Center for Fundamental Research-Cognition

RESEARCH CATEGORY / IMPROVE COGNITION

One component of this work has identified a potential approach to restoration of cerebellum structure throughout life after a single injection of a potential drug on the day of birth in mouse models of Down syndrome. This treatment also improves brain functions involved in learning and memory and these efforts are now directed to identification of new therapeutic strategies and targets that will optimize cognition. A second effort has led to the identification of what promises to be a biomarker and possible therapeutic target of Alzheimer’s disease in Down syndrome brains.

PRIMARY INVESTIGATOR

Dr. Roger Reeves, PhD

SPOTLIGHT #2

The Down Syndrome Cognition Project

RESEARCH CATEGORY / ADVANCE UNDERSTANDING

Emory University School of Medicine

Johns Hopkins University School of Medicine, headquartered in Baltimore, Maryland, is an integrated global health enterprise and one of the leading health care systems in the United States, it has been ranked number one in the nation by U.S. News & World Report for 22 years.

FUNDED TO DATE

$3.6M

Emory University School of Medicine & Research Network Consortium has had a remarkable research trajectory over the past 20 years, during which the university has been consistently one of the fastest growing research institutions in terms of total NIH awards awarded.

FUNDED TO DATE

$1.1M
Defining Genes, Mechanisms and Treatments for Neurodevelopment and Neurodegenerative Causes of Cognitive Dysfunction in Down Syndrome

RESEARCH CATEGORY / PREVENT ALZHEIMER’S ONSET

This research will explore the mechanisms responsible for amyloid-precursor-protein (APP), which is linked to degeneration in Down syndrome, and to further evaluate APP-directed treatments. This will advance the characterization and development of new potential drugs to decrease APP, prevent or reverse the disruption of age-related cognitive dysfunction and Alzheimer’s disease pathology associated with Down syndrome.

PRIMARY INVESTIGATOR

Dr. William Mobley, MD, PhD

Brain Development, Sleep and Learning in Down Syndrome

RESEARCH CATEGORY / IMPROVE COGNITION

The Down syndrome Research program at the University of Arizona (PI Edgin) will continue to engage in research designed to best inform treatment efforts in Down syndrome, including the development and validation of a new iPad cognitive battery for use in clinical trials across the lifespan [i.e., the Arizona Memory Assessment for Preschoolers and Special Populations (A-MAP)]. Further, we will continue to examine the links between sleep and learning in young children with Down syndrome, including the investigation of behavioral sleep modifications that may support learning. This project will pinpoint promising targets for intervention, and help to develop a deeper understanding of how to best support learning and cognitive development in those with Down syndrome.

PRIMARY INVESTIGATOR

Dr. Jamie Edgin, PhD
Sleep, Circadian, and Stem Cell Renewal Factors in the Learning Disability of Down Syndrome

RESEARCH CATEGORY / IMPROVE COGNITION

Our research aims at understanding the causes of intellectual disability in individuals with Down syndrome and applying that knowledge to develop therapies that will improve learning and memory in this population. One focus of our work is the roles of sleep and circadian rhythms in learning and memory and how they are altered by Down syndrome. We believe this quest will lead to the development of potential therapies that will improve cognitive abilities. Another focus of our research is understanding how certain genes triplicated in Down syndrome influence brain development and the continued renewal of neural stem cells. Identifying downstream targets of those gene products should open new opportunities for therapeutic approaches. The ultimate goal of our research is to improve the abilities of individuals with Down syndrome to learn, remember, and process new information.

PRIMARY INVESTIGATORS

Dr. Maddalena Adorno, PhD
Dr. Craig Heller, PhD

Improving Beta-Adrenergic Signaling for the Treatment of Cognitive Dysfunction in Down Syndrome

RESEARCH CATEGORY / IMPROVE COGNITION

The proposed research will continue to test whether i) combining physical exercise with adrenergic agonists could induce stronger positive effects on cognitive function than each treatment individually, ii) quantification of metabolites in urine and plasma could be used as predictors for cognitive dysfunction, and iii) investigate whether exercise-induced increases in PGC-1 used in synergy with adrenergic agonists could improve cognitive function in mouse models of Down syndrome. It is expected that this project will advance research and development of potential norepinephrine-ergic — based therapies for cognitive disabilities in children and reduce Alzheimer’s disease-related abnormalities in adults with Down syndrome.

PRIMARY INVESTIGATOR

Dr. Ahmad Salehi, MD, PhD
A Phase 1B Multi-Center, Double-blind, Randomized, Placebo-Controlled Dose Escalation Study of the Safety, Tolerability, and Immunogenicity of AC1-24 in Adults with Down Syndrome

RESEARCH CATEGORY / PREVENT ALZHEIMER’S ONSET

This landmark study represents the first major clinical trial by a pharmaceutical company for Alzheimer’s Disease (AD) in Down syndrome using a novel, mechanism: an anti-Ab therapeutic agent targeting the consequences of amyloid-precursor protein over-expression and early-onset AD dementia in Down syndrome. It also represents the first ever private-public partnership in Down syndrome (NIH, LuMind RDS, and AC Immune) with the potential for the development of a Ds clinical trials network by leveraging Alzheimer’s Disease Cooperative Study (ADCS) consortium clinical trial sites to conduct further trials addressing AD in Down syndrome.

PRIMARY INVESTIGATORS

- Dr. Wolfgang Barth, PhD
 - AC IMMUNE
- Dr. Andrea Pfeiffer, PhD
 - AC IMMUNE
- Dr. Michael Rafii, MD
 - UCSD

Learning Through Objects in Infants and Toddlers with Down Syndrome

RESEARCH CATEGORY / IMPROVE COGNITION

Early motor training in infants may result in positive long-term effects in other areas of development, according to a collaborative study by researchers at Vanderbilt University, the University of Pittsburgh, and Seton Hall University. This new study demonstrates a powerful link between training infants to reach for an object and later heightened interest in objects and focused attention. Because reduced grasping activity and delays in motor skill development have been associated with risk for developmental disorders, this study is now focused on the implications for individuals Down syndrome.

PRIMARY INVESTIGATORS

- Dr. Maninderjit (Mandy) Kaur, PhD
- Dr. Amy Needham, PhD

AC Immune is passionate about making a difference in the lives of people affected by Alzheimer’s and other neurodegenerative diseases. Their goal is to become the global leader in personalized treatment of neurodegenerative diseases, one of the biggest challenges facing society today and future generations.

Funded To Date

- $0.6M

Vanderbilt University

Vanderbilt is one of only fourteen universities ranked in the top 25 on each of two key indicators: U.S. News & World Report’s Best Universities and Colleges and federal obligations for science and engineering. Vanderbilt University and Vanderbilt University Medical Center researchers are at the forefront of discovery, innovation, scholarship, and creative expression.

Funded To Date

- $125K
Trisomy 21 Dosage Correction and Mapping Resource (T21DoCoMap) and XIST Silencing in Mature Neurons

RESEARCH CATEGORY / DEVELOP GENE THERAPIES / ADVANCE UNDERSTANDING

The primary research objective is to learn how chromosome topology, non-coding (nc)RNA and chromatin modifiers orchestrate gene expression. The X chromosome provides a unique and informative perspective on this problem, in a classic model of epigenetics: X chromosome inactivation (XCI), the process by which one X chromosome in females is silenced to achieve gene dosage parity with males. Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. This same mechanism could be applied to inactivate the extra chromosome 21.

PRIMARY INVESTIGATOR

Dr. Stefan Pinter, PhD

Disomic and Trisomic Pluripotent Stem Cell (iPSC) to Study Pharmacologic Intervention Affecting Gene Expression Patterns in Other Chromosomes

RESEARCH CATEGORY / IMPROVE COGNITION

The Picower Institute for Learning and Memory has collected human skin fibroblast lines from healthy individuals as well as Down syndrome patients and reprogrammed them into induced pluripotent stem cells (iPSCs). Down syndrome patients exhibit a spectrum of pathologies which include heart disease, cancer, craniofacial abnormalities and most predominantly ~99% of Down syndrome patients have deficits in memory and learning. This project will utilize patient derived iPSCs to generate specific cell types of the brain to capture the epigenetic and transcriptomic signatures unique to Down syndrome. Ultimately, the goal is that these techniques will facilitate and expedite drug screening and discovery to screen engineered human brain organoids for compounds and therapies likely to work in the human brain.

PRIMARY INVESTIGATOR

Dr. Hiruy Meharena, PhD

University of Connecticut

The faculty at UConn Health are engaged in a broad range of research activities within the basic, behavioral, and biomedical sciences with the goal of improving the health and well-being of the people of Connecticut and populations across the globe. They seek to expand knowledge of the basic life sciences to propel the development of new and innovative drugs and treatments.

Funded to date

$270K

Massachusetts Institute of Technology

The Picower Institute for Learning and Memory's is one of three neuroscience groups at the Massachusetts Institute of Technology. It’s highly collaborative, cross-disciplinary strategy allows them to explore the nature of the brain from the most basic biological interactions of genes and proteins to in-depth explorations of cellular and systemic mechanisms.

Funded to date

$220K

Research Category / Improve Cognition

This work investigated the development of new animal models for Down syndrome using C. elegans, a major, long-standing experimental laboratory organism, together with a novel high-throughput screening system to discover the function of novel genes on the 21st chromosome and to identify potential drugs to prevent neurodegeneration in Down syndrome-related Alzheimer’s disease.

Primary Investigator

Dr. Jon Pierce-Shimomura, PhD

Funded to Date

$176K
LUMIND RESEARCH DOWN SYNDROME FOUNDATION
FOUNDERS & BOARD OF DIRECTORS

Roger & Dawn Kafker
CO-FOUNDERS

Jim & Patty White
CO-FOUNDERS

Bjoern Sperling, MD
CHAIR
Sr. Medical Director, Biogen

Michael J. Mannor, PhD
VICE CHAIR
Associate Professor, University of Notre Dame

Patrick Kannan
TREASURER
Chief Financial Officer, Exostar, LLC

Amy Allison
SECRETARY
Executive Director, Down Syndrome Guild of Greater Kansas

Hector Guinness
Technology Investor, HG Capital

Ryan M. Hartman
President and CEO, Insitu Inc.

Anula Jayasuriya, MD
Founder and Managing Director, EXXclaim Capital

Christopher Lis, PhD, MPH
President and Chief Operating Officer, Lexington Health Network

Paul Murasko
Marketing and Sales Leader, Sunovion Pharmaceuticals

Sarah Wernikoff
Independent Consultant

CONTACT LUMIND RDS
To learn more about LuMind RDS’ work in down syndrome research, or to explore how you can get involved, please contact Jill Reslock at the LuMind RDS office: jreslock@lumindrds.org / 508.630.2177.